(0) Obligation:

Clauses:

append([], Ys, Ys).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).
sublist(X, Y) :- ','(append(P, X1, Y), append(X2, X, P)).

Query: sublist(g,g)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

appendA([], T44, T44).
appendA(.(T49, X93), X94, .(T49, T50)) :- appendA(X93, X94, T50).
appendB([], T90, T90).
appendB(.(T98, X148), T97, .(T98, T99)) :- appendB(X148, T97, T99).
sublistC([], T15).
sublistC(T5, .(T28, T29)) :- appendA(X56, X57, T29).
sublistC(.(T71, T72), .(T71, T29)) :- appendA(T72, T38, T29).
sublistC(T81, .(T82, T29)) :- ','(appendA(T83, T38, T29), appendB(X123, T81, T83)).

Query: sublistC(g,g)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
sublistC_in: (b,b)
appendA_in: (f,f,b) (b,f,b)
appendB_in: (f,b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

sublistC_in_gg([], T15) → sublistC_out_gg([], T15)
sublistC_in_gg(T5, .(T28, T29)) → U3_gg(T5, T28, T29, appendA_in_aag(X56, X57, T29))
appendA_in_aag([], T44, T44) → appendA_out_aag([], T44, T44)
appendA_in_aag(.(T49, X93), X94, .(T49, T50)) → U1_aag(T49, X93, X94, T50, appendA_in_aag(X93, X94, T50))
U1_aag(T49, X93, X94, T50, appendA_out_aag(X93, X94, T50)) → appendA_out_aag(.(T49, X93), X94, .(T49, T50))
U3_gg(T5, T28, T29, appendA_out_aag(X56, X57, T29)) → sublistC_out_gg(T5, .(T28, T29))
sublistC_in_gg(.(T71, T72), .(T71, T29)) → U4_gg(T71, T72, T29, appendA_in_gag(T72, T38, T29))
appendA_in_gag([], T44, T44) → appendA_out_gag([], T44, T44)
appendA_in_gag(.(T49, X93), X94, .(T49, T50)) → U1_gag(T49, X93, X94, T50, appendA_in_gag(X93, X94, T50))
U1_gag(T49, X93, X94, T50, appendA_out_gag(X93, X94, T50)) → appendA_out_gag(.(T49, X93), X94, .(T49, T50))
U4_gg(T71, T72, T29, appendA_out_gag(T72, T38, T29)) → sublistC_out_gg(.(T71, T72), .(T71, T29))
sublistC_in_gg(T81, .(T82, T29)) → U5_gg(T81, T82, T29, appendA_in_aag(T83, T38, T29))
U5_gg(T81, T82, T29, appendA_out_aag(T83, T38, T29)) → U6_gg(T81, T82, T29, appendB_in_agg(X123, T81, T83))
appendB_in_agg([], T90, T90) → appendB_out_agg([], T90, T90)
appendB_in_agg(.(T98, X148), T97, .(T98, T99)) → U2_agg(T98, X148, T97, T99, appendB_in_agg(X148, T97, T99))
U2_agg(T98, X148, T97, T99, appendB_out_agg(X148, T97, T99)) → appendB_out_agg(.(T98, X148), T97, .(T98, T99))
U6_gg(T81, T82, T29, appendB_out_agg(X123, T81, T83)) → sublistC_out_gg(T81, .(T82, T29))

The argument filtering Pi contains the following mapping:
sublistC_in_gg(x1, x2)  =  sublistC_in_gg(x1, x2)
[]  =  []
sublistC_out_gg(x1, x2)  =  sublistC_out_gg
.(x1, x2)  =  .(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x4)
appendA_in_aag(x1, x2, x3)  =  appendA_in_aag(x3)
appendA_out_aag(x1, x2, x3)  =  appendA_out_aag(x1, x2)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x5)
U4_gg(x1, x2, x3, x4)  =  U4_gg(x4)
appendA_in_gag(x1, x2, x3)  =  appendA_in_gag(x1, x3)
appendA_out_gag(x1, x2, x3)  =  appendA_out_gag(x2)
U1_gag(x1, x2, x3, x4, x5)  =  U1_gag(x5)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x4)
U6_gg(x1, x2, x3, x4)  =  U6_gg(x4)
appendB_in_agg(x1, x2, x3)  =  appendB_in_agg(x2, x3)
appendB_out_agg(x1, x2, x3)  =  appendB_out_agg(x1)
U2_agg(x1, x2, x3, x4, x5)  =  U2_agg(x1, x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

sublistC_in_gg([], T15) → sublistC_out_gg([], T15)
sublistC_in_gg(T5, .(T28, T29)) → U3_gg(T5, T28, T29, appendA_in_aag(X56, X57, T29))
appendA_in_aag([], T44, T44) → appendA_out_aag([], T44, T44)
appendA_in_aag(.(T49, X93), X94, .(T49, T50)) → U1_aag(T49, X93, X94, T50, appendA_in_aag(X93, X94, T50))
U1_aag(T49, X93, X94, T50, appendA_out_aag(X93, X94, T50)) → appendA_out_aag(.(T49, X93), X94, .(T49, T50))
U3_gg(T5, T28, T29, appendA_out_aag(X56, X57, T29)) → sublistC_out_gg(T5, .(T28, T29))
sublistC_in_gg(.(T71, T72), .(T71, T29)) → U4_gg(T71, T72, T29, appendA_in_gag(T72, T38, T29))
appendA_in_gag([], T44, T44) → appendA_out_gag([], T44, T44)
appendA_in_gag(.(T49, X93), X94, .(T49, T50)) → U1_gag(T49, X93, X94, T50, appendA_in_gag(X93, X94, T50))
U1_gag(T49, X93, X94, T50, appendA_out_gag(X93, X94, T50)) → appendA_out_gag(.(T49, X93), X94, .(T49, T50))
U4_gg(T71, T72, T29, appendA_out_gag(T72, T38, T29)) → sublistC_out_gg(.(T71, T72), .(T71, T29))
sublistC_in_gg(T81, .(T82, T29)) → U5_gg(T81, T82, T29, appendA_in_aag(T83, T38, T29))
U5_gg(T81, T82, T29, appendA_out_aag(T83, T38, T29)) → U6_gg(T81, T82, T29, appendB_in_agg(X123, T81, T83))
appendB_in_agg([], T90, T90) → appendB_out_agg([], T90, T90)
appendB_in_agg(.(T98, X148), T97, .(T98, T99)) → U2_agg(T98, X148, T97, T99, appendB_in_agg(X148, T97, T99))
U2_agg(T98, X148, T97, T99, appendB_out_agg(X148, T97, T99)) → appendB_out_agg(.(T98, X148), T97, .(T98, T99))
U6_gg(T81, T82, T29, appendB_out_agg(X123, T81, T83)) → sublistC_out_gg(T81, .(T82, T29))

The argument filtering Pi contains the following mapping:
sublistC_in_gg(x1, x2)  =  sublistC_in_gg(x1, x2)
[]  =  []
sublistC_out_gg(x1, x2)  =  sublistC_out_gg
.(x1, x2)  =  .(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x4)
appendA_in_aag(x1, x2, x3)  =  appendA_in_aag(x3)
appendA_out_aag(x1, x2, x3)  =  appendA_out_aag(x1, x2)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x5)
U4_gg(x1, x2, x3, x4)  =  U4_gg(x4)
appendA_in_gag(x1, x2, x3)  =  appendA_in_gag(x1, x3)
appendA_out_gag(x1, x2, x3)  =  appendA_out_gag(x2)
U1_gag(x1, x2, x3, x4, x5)  =  U1_gag(x5)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x4)
U6_gg(x1, x2, x3, x4)  =  U6_gg(x4)
appendB_in_agg(x1, x2, x3)  =  appendB_in_agg(x2, x3)
appendB_out_agg(x1, x2, x3)  =  appendB_out_agg(x1)
U2_agg(x1, x2, x3, x4, x5)  =  U2_agg(x1, x5)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

SUBLISTC_IN_GG(T5, .(T28, T29)) → U3_GG(T5, T28, T29, appendA_in_aag(X56, X57, T29))
SUBLISTC_IN_GG(T5, .(T28, T29)) → APPENDA_IN_AAG(X56, X57, T29)
APPENDA_IN_AAG(.(T49, X93), X94, .(T49, T50)) → U1_AAG(T49, X93, X94, T50, appendA_in_aag(X93, X94, T50))
APPENDA_IN_AAG(.(T49, X93), X94, .(T49, T50)) → APPENDA_IN_AAG(X93, X94, T50)
SUBLISTC_IN_GG(.(T71, T72), .(T71, T29)) → U4_GG(T71, T72, T29, appendA_in_gag(T72, T38, T29))
SUBLISTC_IN_GG(.(T71, T72), .(T71, T29)) → APPENDA_IN_GAG(T72, T38, T29)
APPENDA_IN_GAG(.(T49, X93), X94, .(T49, T50)) → U1_GAG(T49, X93, X94, T50, appendA_in_gag(X93, X94, T50))
APPENDA_IN_GAG(.(T49, X93), X94, .(T49, T50)) → APPENDA_IN_GAG(X93, X94, T50)
SUBLISTC_IN_GG(T81, .(T82, T29)) → U5_GG(T81, T82, T29, appendA_in_aag(T83, T38, T29))
U5_GG(T81, T82, T29, appendA_out_aag(T83, T38, T29)) → U6_GG(T81, T82, T29, appendB_in_agg(X123, T81, T83))
U5_GG(T81, T82, T29, appendA_out_aag(T83, T38, T29)) → APPENDB_IN_AGG(X123, T81, T83)
APPENDB_IN_AGG(.(T98, X148), T97, .(T98, T99)) → U2_AGG(T98, X148, T97, T99, appendB_in_agg(X148, T97, T99))
APPENDB_IN_AGG(.(T98, X148), T97, .(T98, T99)) → APPENDB_IN_AGG(X148, T97, T99)

The TRS R consists of the following rules:

sublistC_in_gg([], T15) → sublistC_out_gg([], T15)
sublistC_in_gg(T5, .(T28, T29)) → U3_gg(T5, T28, T29, appendA_in_aag(X56, X57, T29))
appendA_in_aag([], T44, T44) → appendA_out_aag([], T44, T44)
appendA_in_aag(.(T49, X93), X94, .(T49, T50)) → U1_aag(T49, X93, X94, T50, appendA_in_aag(X93, X94, T50))
U1_aag(T49, X93, X94, T50, appendA_out_aag(X93, X94, T50)) → appendA_out_aag(.(T49, X93), X94, .(T49, T50))
U3_gg(T5, T28, T29, appendA_out_aag(X56, X57, T29)) → sublistC_out_gg(T5, .(T28, T29))
sublistC_in_gg(.(T71, T72), .(T71, T29)) → U4_gg(T71, T72, T29, appendA_in_gag(T72, T38, T29))
appendA_in_gag([], T44, T44) → appendA_out_gag([], T44, T44)
appendA_in_gag(.(T49, X93), X94, .(T49, T50)) → U1_gag(T49, X93, X94, T50, appendA_in_gag(X93, X94, T50))
U1_gag(T49, X93, X94, T50, appendA_out_gag(X93, X94, T50)) → appendA_out_gag(.(T49, X93), X94, .(T49, T50))
U4_gg(T71, T72, T29, appendA_out_gag(T72, T38, T29)) → sublistC_out_gg(.(T71, T72), .(T71, T29))
sublistC_in_gg(T81, .(T82, T29)) → U5_gg(T81, T82, T29, appendA_in_aag(T83, T38, T29))
U5_gg(T81, T82, T29, appendA_out_aag(T83, T38, T29)) → U6_gg(T81, T82, T29, appendB_in_agg(X123, T81, T83))
appendB_in_agg([], T90, T90) → appendB_out_agg([], T90, T90)
appendB_in_agg(.(T98, X148), T97, .(T98, T99)) → U2_agg(T98, X148, T97, T99, appendB_in_agg(X148, T97, T99))
U2_agg(T98, X148, T97, T99, appendB_out_agg(X148, T97, T99)) → appendB_out_agg(.(T98, X148), T97, .(T98, T99))
U6_gg(T81, T82, T29, appendB_out_agg(X123, T81, T83)) → sublistC_out_gg(T81, .(T82, T29))

The argument filtering Pi contains the following mapping:
sublistC_in_gg(x1, x2)  =  sublistC_in_gg(x1, x2)
[]  =  []
sublistC_out_gg(x1, x2)  =  sublistC_out_gg
.(x1, x2)  =  .(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x4)
appendA_in_aag(x1, x2, x3)  =  appendA_in_aag(x3)
appendA_out_aag(x1, x2, x3)  =  appendA_out_aag(x1, x2)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x5)
U4_gg(x1, x2, x3, x4)  =  U4_gg(x4)
appendA_in_gag(x1, x2, x3)  =  appendA_in_gag(x1, x3)
appendA_out_gag(x1, x2, x3)  =  appendA_out_gag(x2)
U1_gag(x1, x2, x3, x4, x5)  =  U1_gag(x5)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x4)
U6_gg(x1, x2, x3, x4)  =  U6_gg(x4)
appendB_in_agg(x1, x2, x3)  =  appendB_in_agg(x2, x3)
appendB_out_agg(x1, x2, x3)  =  appendB_out_agg(x1)
U2_agg(x1, x2, x3, x4, x5)  =  U2_agg(x1, x5)
SUBLISTC_IN_GG(x1, x2)  =  SUBLISTC_IN_GG(x1, x2)
U3_GG(x1, x2, x3, x4)  =  U3_GG(x4)
APPENDA_IN_AAG(x1, x2, x3)  =  APPENDA_IN_AAG(x3)
U1_AAG(x1, x2, x3, x4, x5)  =  U1_AAG(x1, x5)
U4_GG(x1, x2, x3, x4)  =  U4_GG(x4)
APPENDA_IN_GAG(x1, x2, x3)  =  APPENDA_IN_GAG(x1, x3)
U1_GAG(x1, x2, x3, x4, x5)  =  U1_GAG(x5)
U5_GG(x1, x2, x3, x4)  =  U5_GG(x1, x4)
U6_GG(x1, x2, x3, x4)  =  U6_GG(x4)
APPENDB_IN_AGG(x1, x2, x3)  =  APPENDB_IN_AGG(x2, x3)
U2_AGG(x1, x2, x3, x4, x5)  =  U2_AGG(x1, x5)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBLISTC_IN_GG(T5, .(T28, T29)) → U3_GG(T5, T28, T29, appendA_in_aag(X56, X57, T29))
SUBLISTC_IN_GG(T5, .(T28, T29)) → APPENDA_IN_AAG(X56, X57, T29)
APPENDA_IN_AAG(.(T49, X93), X94, .(T49, T50)) → U1_AAG(T49, X93, X94, T50, appendA_in_aag(X93, X94, T50))
APPENDA_IN_AAG(.(T49, X93), X94, .(T49, T50)) → APPENDA_IN_AAG(X93, X94, T50)
SUBLISTC_IN_GG(.(T71, T72), .(T71, T29)) → U4_GG(T71, T72, T29, appendA_in_gag(T72, T38, T29))
SUBLISTC_IN_GG(.(T71, T72), .(T71, T29)) → APPENDA_IN_GAG(T72, T38, T29)
APPENDA_IN_GAG(.(T49, X93), X94, .(T49, T50)) → U1_GAG(T49, X93, X94, T50, appendA_in_gag(X93, X94, T50))
APPENDA_IN_GAG(.(T49, X93), X94, .(T49, T50)) → APPENDA_IN_GAG(X93, X94, T50)
SUBLISTC_IN_GG(T81, .(T82, T29)) → U5_GG(T81, T82, T29, appendA_in_aag(T83, T38, T29))
U5_GG(T81, T82, T29, appendA_out_aag(T83, T38, T29)) → U6_GG(T81, T82, T29, appendB_in_agg(X123, T81, T83))
U5_GG(T81, T82, T29, appendA_out_aag(T83, T38, T29)) → APPENDB_IN_AGG(X123, T81, T83)
APPENDB_IN_AGG(.(T98, X148), T97, .(T98, T99)) → U2_AGG(T98, X148, T97, T99, appendB_in_agg(X148, T97, T99))
APPENDB_IN_AGG(.(T98, X148), T97, .(T98, T99)) → APPENDB_IN_AGG(X148, T97, T99)

The TRS R consists of the following rules:

sublistC_in_gg([], T15) → sublistC_out_gg([], T15)
sublistC_in_gg(T5, .(T28, T29)) → U3_gg(T5, T28, T29, appendA_in_aag(X56, X57, T29))
appendA_in_aag([], T44, T44) → appendA_out_aag([], T44, T44)
appendA_in_aag(.(T49, X93), X94, .(T49, T50)) → U1_aag(T49, X93, X94, T50, appendA_in_aag(X93, X94, T50))
U1_aag(T49, X93, X94, T50, appendA_out_aag(X93, X94, T50)) → appendA_out_aag(.(T49, X93), X94, .(T49, T50))
U3_gg(T5, T28, T29, appendA_out_aag(X56, X57, T29)) → sublistC_out_gg(T5, .(T28, T29))
sublistC_in_gg(.(T71, T72), .(T71, T29)) → U4_gg(T71, T72, T29, appendA_in_gag(T72, T38, T29))
appendA_in_gag([], T44, T44) → appendA_out_gag([], T44, T44)
appendA_in_gag(.(T49, X93), X94, .(T49, T50)) → U1_gag(T49, X93, X94, T50, appendA_in_gag(X93, X94, T50))
U1_gag(T49, X93, X94, T50, appendA_out_gag(X93, X94, T50)) → appendA_out_gag(.(T49, X93), X94, .(T49, T50))
U4_gg(T71, T72, T29, appendA_out_gag(T72, T38, T29)) → sublistC_out_gg(.(T71, T72), .(T71, T29))
sublistC_in_gg(T81, .(T82, T29)) → U5_gg(T81, T82, T29, appendA_in_aag(T83, T38, T29))
U5_gg(T81, T82, T29, appendA_out_aag(T83, T38, T29)) → U6_gg(T81, T82, T29, appendB_in_agg(X123, T81, T83))
appendB_in_agg([], T90, T90) → appendB_out_agg([], T90, T90)
appendB_in_agg(.(T98, X148), T97, .(T98, T99)) → U2_agg(T98, X148, T97, T99, appendB_in_agg(X148, T97, T99))
U2_agg(T98, X148, T97, T99, appendB_out_agg(X148, T97, T99)) → appendB_out_agg(.(T98, X148), T97, .(T98, T99))
U6_gg(T81, T82, T29, appendB_out_agg(X123, T81, T83)) → sublistC_out_gg(T81, .(T82, T29))

The argument filtering Pi contains the following mapping:
sublistC_in_gg(x1, x2)  =  sublistC_in_gg(x1, x2)
[]  =  []
sublistC_out_gg(x1, x2)  =  sublistC_out_gg
.(x1, x2)  =  .(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x4)
appendA_in_aag(x1, x2, x3)  =  appendA_in_aag(x3)
appendA_out_aag(x1, x2, x3)  =  appendA_out_aag(x1, x2)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x5)
U4_gg(x1, x2, x3, x4)  =  U4_gg(x4)
appendA_in_gag(x1, x2, x3)  =  appendA_in_gag(x1, x3)
appendA_out_gag(x1, x2, x3)  =  appendA_out_gag(x2)
U1_gag(x1, x2, x3, x4, x5)  =  U1_gag(x5)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x4)
U6_gg(x1, x2, x3, x4)  =  U6_gg(x4)
appendB_in_agg(x1, x2, x3)  =  appendB_in_agg(x2, x3)
appendB_out_agg(x1, x2, x3)  =  appendB_out_agg(x1)
U2_agg(x1, x2, x3, x4, x5)  =  U2_agg(x1, x5)
SUBLISTC_IN_GG(x1, x2)  =  SUBLISTC_IN_GG(x1, x2)
U3_GG(x1, x2, x3, x4)  =  U3_GG(x4)
APPENDA_IN_AAG(x1, x2, x3)  =  APPENDA_IN_AAG(x3)
U1_AAG(x1, x2, x3, x4, x5)  =  U1_AAG(x1, x5)
U4_GG(x1, x2, x3, x4)  =  U4_GG(x4)
APPENDA_IN_GAG(x1, x2, x3)  =  APPENDA_IN_GAG(x1, x3)
U1_GAG(x1, x2, x3, x4, x5)  =  U1_GAG(x5)
U5_GG(x1, x2, x3, x4)  =  U5_GG(x1, x4)
U6_GG(x1, x2, x3, x4)  =  U6_GG(x4)
APPENDB_IN_AGG(x1, x2, x3)  =  APPENDB_IN_AGG(x2, x3)
U2_AGG(x1, x2, x3, x4, x5)  =  U2_AGG(x1, x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 10 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDB_IN_AGG(.(T98, X148), T97, .(T98, T99)) → APPENDB_IN_AGG(X148, T97, T99)

The TRS R consists of the following rules:

sublistC_in_gg([], T15) → sublistC_out_gg([], T15)
sublistC_in_gg(T5, .(T28, T29)) → U3_gg(T5, T28, T29, appendA_in_aag(X56, X57, T29))
appendA_in_aag([], T44, T44) → appendA_out_aag([], T44, T44)
appendA_in_aag(.(T49, X93), X94, .(T49, T50)) → U1_aag(T49, X93, X94, T50, appendA_in_aag(X93, X94, T50))
U1_aag(T49, X93, X94, T50, appendA_out_aag(X93, X94, T50)) → appendA_out_aag(.(T49, X93), X94, .(T49, T50))
U3_gg(T5, T28, T29, appendA_out_aag(X56, X57, T29)) → sublistC_out_gg(T5, .(T28, T29))
sublistC_in_gg(.(T71, T72), .(T71, T29)) → U4_gg(T71, T72, T29, appendA_in_gag(T72, T38, T29))
appendA_in_gag([], T44, T44) → appendA_out_gag([], T44, T44)
appendA_in_gag(.(T49, X93), X94, .(T49, T50)) → U1_gag(T49, X93, X94, T50, appendA_in_gag(X93, X94, T50))
U1_gag(T49, X93, X94, T50, appendA_out_gag(X93, X94, T50)) → appendA_out_gag(.(T49, X93), X94, .(T49, T50))
U4_gg(T71, T72, T29, appendA_out_gag(T72, T38, T29)) → sublistC_out_gg(.(T71, T72), .(T71, T29))
sublistC_in_gg(T81, .(T82, T29)) → U5_gg(T81, T82, T29, appendA_in_aag(T83, T38, T29))
U5_gg(T81, T82, T29, appendA_out_aag(T83, T38, T29)) → U6_gg(T81, T82, T29, appendB_in_agg(X123, T81, T83))
appendB_in_agg([], T90, T90) → appendB_out_agg([], T90, T90)
appendB_in_agg(.(T98, X148), T97, .(T98, T99)) → U2_agg(T98, X148, T97, T99, appendB_in_agg(X148, T97, T99))
U2_agg(T98, X148, T97, T99, appendB_out_agg(X148, T97, T99)) → appendB_out_agg(.(T98, X148), T97, .(T98, T99))
U6_gg(T81, T82, T29, appendB_out_agg(X123, T81, T83)) → sublistC_out_gg(T81, .(T82, T29))

The argument filtering Pi contains the following mapping:
sublistC_in_gg(x1, x2)  =  sublistC_in_gg(x1, x2)
[]  =  []
sublistC_out_gg(x1, x2)  =  sublistC_out_gg
.(x1, x2)  =  .(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x4)
appendA_in_aag(x1, x2, x3)  =  appendA_in_aag(x3)
appendA_out_aag(x1, x2, x3)  =  appendA_out_aag(x1, x2)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x5)
U4_gg(x1, x2, x3, x4)  =  U4_gg(x4)
appendA_in_gag(x1, x2, x3)  =  appendA_in_gag(x1, x3)
appendA_out_gag(x1, x2, x3)  =  appendA_out_gag(x2)
U1_gag(x1, x2, x3, x4, x5)  =  U1_gag(x5)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x4)
U6_gg(x1, x2, x3, x4)  =  U6_gg(x4)
appendB_in_agg(x1, x2, x3)  =  appendB_in_agg(x2, x3)
appendB_out_agg(x1, x2, x3)  =  appendB_out_agg(x1)
U2_agg(x1, x2, x3, x4, x5)  =  U2_agg(x1, x5)
APPENDB_IN_AGG(x1, x2, x3)  =  APPENDB_IN_AGG(x2, x3)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDB_IN_AGG(.(T98, X148), T97, .(T98, T99)) → APPENDB_IN_AGG(X148, T97, T99)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPENDB_IN_AGG(x1, x2, x3)  =  APPENDB_IN_AGG(x2, x3)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPENDB_IN_AGG(T97, .(T98, T99)) → APPENDB_IN_AGG(T97, T99)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPENDB_IN_AGG(T97, .(T98, T99)) → APPENDB_IN_AGG(T97, T99)
    The graph contains the following edges 1 >= 1, 2 > 2

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDA_IN_GAG(.(T49, X93), X94, .(T49, T50)) → APPENDA_IN_GAG(X93, X94, T50)

The TRS R consists of the following rules:

sublistC_in_gg([], T15) → sublistC_out_gg([], T15)
sublistC_in_gg(T5, .(T28, T29)) → U3_gg(T5, T28, T29, appendA_in_aag(X56, X57, T29))
appendA_in_aag([], T44, T44) → appendA_out_aag([], T44, T44)
appendA_in_aag(.(T49, X93), X94, .(T49, T50)) → U1_aag(T49, X93, X94, T50, appendA_in_aag(X93, X94, T50))
U1_aag(T49, X93, X94, T50, appendA_out_aag(X93, X94, T50)) → appendA_out_aag(.(T49, X93), X94, .(T49, T50))
U3_gg(T5, T28, T29, appendA_out_aag(X56, X57, T29)) → sublistC_out_gg(T5, .(T28, T29))
sublistC_in_gg(.(T71, T72), .(T71, T29)) → U4_gg(T71, T72, T29, appendA_in_gag(T72, T38, T29))
appendA_in_gag([], T44, T44) → appendA_out_gag([], T44, T44)
appendA_in_gag(.(T49, X93), X94, .(T49, T50)) → U1_gag(T49, X93, X94, T50, appendA_in_gag(X93, X94, T50))
U1_gag(T49, X93, X94, T50, appendA_out_gag(X93, X94, T50)) → appendA_out_gag(.(T49, X93), X94, .(T49, T50))
U4_gg(T71, T72, T29, appendA_out_gag(T72, T38, T29)) → sublistC_out_gg(.(T71, T72), .(T71, T29))
sublistC_in_gg(T81, .(T82, T29)) → U5_gg(T81, T82, T29, appendA_in_aag(T83, T38, T29))
U5_gg(T81, T82, T29, appendA_out_aag(T83, T38, T29)) → U6_gg(T81, T82, T29, appendB_in_agg(X123, T81, T83))
appendB_in_agg([], T90, T90) → appendB_out_agg([], T90, T90)
appendB_in_agg(.(T98, X148), T97, .(T98, T99)) → U2_agg(T98, X148, T97, T99, appendB_in_agg(X148, T97, T99))
U2_agg(T98, X148, T97, T99, appendB_out_agg(X148, T97, T99)) → appendB_out_agg(.(T98, X148), T97, .(T98, T99))
U6_gg(T81, T82, T29, appendB_out_agg(X123, T81, T83)) → sublistC_out_gg(T81, .(T82, T29))

The argument filtering Pi contains the following mapping:
sublistC_in_gg(x1, x2)  =  sublistC_in_gg(x1, x2)
[]  =  []
sublistC_out_gg(x1, x2)  =  sublistC_out_gg
.(x1, x2)  =  .(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x4)
appendA_in_aag(x1, x2, x3)  =  appendA_in_aag(x3)
appendA_out_aag(x1, x2, x3)  =  appendA_out_aag(x1, x2)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x5)
U4_gg(x1, x2, x3, x4)  =  U4_gg(x4)
appendA_in_gag(x1, x2, x3)  =  appendA_in_gag(x1, x3)
appendA_out_gag(x1, x2, x3)  =  appendA_out_gag(x2)
U1_gag(x1, x2, x3, x4, x5)  =  U1_gag(x5)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x4)
U6_gg(x1, x2, x3, x4)  =  U6_gg(x4)
appendB_in_agg(x1, x2, x3)  =  appendB_in_agg(x2, x3)
appendB_out_agg(x1, x2, x3)  =  appendB_out_agg(x1)
U2_agg(x1, x2, x3, x4, x5)  =  U2_agg(x1, x5)
APPENDA_IN_GAG(x1, x2, x3)  =  APPENDA_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDA_IN_GAG(.(T49, X93), X94, .(T49, T50)) → APPENDA_IN_GAG(X93, X94, T50)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPENDA_IN_GAG(x1, x2, x3)  =  APPENDA_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPENDA_IN_GAG(.(T49, X93), .(T49, T50)) → APPENDA_IN_GAG(X93, T50)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPENDA_IN_GAG(.(T49, X93), .(T49, T50)) → APPENDA_IN_GAG(X93, T50)
    The graph contains the following edges 1 > 1, 2 > 2

(22) YES

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDA_IN_AAG(.(T49, X93), X94, .(T49, T50)) → APPENDA_IN_AAG(X93, X94, T50)

The TRS R consists of the following rules:

sublistC_in_gg([], T15) → sublistC_out_gg([], T15)
sublistC_in_gg(T5, .(T28, T29)) → U3_gg(T5, T28, T29, appendA_in_aag(X56, X57, T29))
appendA_in_aag([], T44, T44) → appendA_out_aag([], T44, T44)
appendA_in_aag(.(T49, X93), X94, .(T49, T50)) → U1_aag(T49, X93, X94, T50, appendA_in_aag(X93, X94, T50))
U1_aag(T49, X93, X94, T50, appendA_out_aag(X93, X94, T50)) → appendA_out_aag(.(T49, X93), X94, .(T49, T50))
U3_gg(T5, T28, T29, appendA_out_aag(X56, X57, T29)) → sublistC_out_gg(T5, .(T28, T29))
sublistC_in_gg(.(T71, T72), .(T71, T29)) → U4_gg(T71, T72, T29, appendA_in_gag(T72, T38, T29))
appendA_in_gag([], T44, T44) → appendA_out_gag([], T44, T44)
appendA_in_gag(.(T49, X93), X94, .(T49, T50)) → U1_gag(T49, X93, X94, T50, appendA_in_gag(X93, X94, T50))
U1_gag(T49, X93, X94, T50, appendA_out_gag(X93, X94, T50)) → appendA_out_gag(.(T49, X93), X94, .(T49, T50))
U4_gg(T71, T72, T29, appendA_out_gag(T72, T38, T29)) → sublistC_out_gg(.(T71, T72), .(T71, T29))
sublistC_in_gg(T81, .(T82, T29)) → U5_gg(T81, T82, T29, appendA_in_aag(T83, T38, T29))
U5_gg(T81, T82, T29, appendA_out_aag(T83, T38, T29)) → U6_gg(T81, T82, T29, appendB_in_agg(X123, T81, T83))
appendB_in_agg([], T90, T90) → appendB_out_agg([], T90, T90)
appendB_in_agg(.(T98, X148), T97, .(T98, T99)) → U2_agg(T98, X148, T97, T99, appendB_in_agg(X148, T97, T99))
U2_agg(T98, X148, T97, T99, appendB_out_agg(X148, T97, T99)) → appendB_out_agg(.(T98, X148), T97, .(T98, T99))
U6_gg(T81, T82, T29, appendB_out_agg(X123, T81, T83)) → sublistC_out_gg(T81, .(T82, T29))

The argument filtering Pi contains the following mapping:
sublistC_in_gg(x1, x2)  =  sublistC_in_gg(x1, x2)
[]  =  []
sublistC_out_gg(x1, x2)  =  sublistC_out_gg
.(x1, x2)  =  .(x1, x2)
U3_gg(x1, x2, x3, x4)  =  U3_gg(x4)
appendA_in_aag(x1, x2, x3)  =  appendA_in_aag(x3)
appendA_out_aag(x1, x2, x3)  =  appendA_out_aag(x1, x2)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x5)
U4_gg(x1, x2, x3, x4)  =  U4_gg(x4)
appendA_in_gag(x1, x2, x3)  =  appendA_in_gag(x1, x3)
appendA_out_gag(x1, x2, x3)  =  appendA_out_gag(x2)
U1_gag(x1, x2, x3, x4, x5)  =  U1_gag(x5)
U5_gg(x1, x2, x3, x4)  =  U5_gg(x1, x4)
U6_gg(x1, x2, x3, x4)  =  U6_gg(x4)
appendB_in_agg(x1, x2, x3)  =  appendB_in_agg(x2, x3)
appendB_out_agg(x1, x2, x3)  =  appendB_out_agg(x1)
U2_agg(x1, x2, x3, x4, x5)  =  U2_agg(x1, x5)
APPENDA_IN_AAG(x1, x2, x3)  =  APPENDA_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDA_IN_AAG(.(T49, X93), X94, .(T49, T50)) → APPENDA_IN_AAG(X93, X94, T50)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPENDA_IN_AAG(x1, x2, x3)  =  APPENDA_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPENDA_IN_AAG(.(T49, T50)) → APPENDA_IN_AAG(T50)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(28) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPENDA_IN_AAG(.(T49, T50)) → APPENDA_IN_AAG(T50)
    The graph contains the following edges 1 > 1

(29) YES